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Dynamics and stability of solitary waves in optical-microwave interaction
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We study the dynamics and the stability of localized bound states of optical and microwave fields, which are
linked together by a quadratic nonlinearity. The system is an example of an intense interaction between low and
high frequency waves, as appears in many areas of physics. Perturbed solitary waves show a number of regular
but damped oscillations with strong radiation from the microwave. It is demonstrated that these oscillations are
caused by the excitation of several quasibound asymmetric linear modes of the solitary wave. The associated
eigenvalues are found to be complex leading to a decay of the oscillations as observed numerically. Additional
quasibound linear modes with a complex eigenvalue corresponding to exponential growth also exist, but due to
physical constraints cannot be excited. Therefore, in contrast to systems solely with high frequency waves, the
stability of the solutions is retained.
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I. INTRODUCTION

Cascading effects between a fundamental and a se
harmonic in media with a second-order nonlinearity are n
a well understood topic@1#. In particular, the mutual locking
between both waves has been a subject of intensive inv
gation ~for a review, see for example, Ref.@2#!. Here, phase
modulation of the fundamental wave due to interaction w
the second harmonic@3,4# leads to an effective third-orde
nonlinearity allowing propagation of bound states betwe
fundamental and second harmonic, i.e., solitary waves. H
ever, a less investigated effect in second-order nonlinear
which can also lead to cascading effects is optical rectifi
tion ~OR! @5#, meaning the generation of a static or qua
static electric field from a coherent light source.

OR and the electro-optic effect~EOE! are known to con-
nect the propagation of high frequency optical and quas
microwave pulses in traveling wave structures, e.g., elec
optic modulators@6#. The resulting set of evolution equation
@7,8# almost coincides with those derived to describe the
teraction between short and long waves in hydrodynam
@9# or plasma physics@10#. Due to the distinct spectral prop
erties of the two interacting waves, the mathematical exp
sions used to describe their evolution are extremely differ
A real valued Korteweg de Vries~KdV! type equation ac-
counts for the evolution of the long waves. In contrast
slowly varying envelope approximation is applied to the hi
frequency components and a Schro¨dinger-like equation is
obtained for the complex envelope of the optical field. T
whole set of evolution equations allows for bright solita
wave solutions@11,12#, where the joint action of microwave
generation by OR and of the back coupling of the quasist
electrical signal on the optical wave via the EOE mediates
effective cubic nonlinearity@13#. Here we show that a short
wave–long-wave interaction, where the wavelengths of
interacting waves differ by orders of magnitudes, gives r
to completely different and somehow unexpected dynam
effects. In particular, the absence of a gap in the linear sp
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trum of the microwave gives rise to an intriguing stable b
havior.

In this work we first introduce the system of equatio
and discuss solitary wave solutions. Then we investig
their response on perturbations and perform a linear stab
analysis.

II. EVOLUTION EQUATIONS AND SOLITARY
WAVE SOLUTIONS

The mutual interaction of an optical with a microwav
pulse in a traveling wave structure is governed by the f
lowing set of suitably scaled evolution equations@7,8#:
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The two interacting waves are described by completely
ferent expressions because of their distinct spectral ori
um is the real valued amplitude of the microwave who
spectrum is centered aroundv50. In contrast, the fast os
cillating term of the high frequency optical component h
already been removed and all the evolution is due to
complex slowly varying envelopeuo . The coordinatez cor-
responds to the propagation direction andt to the time in a
reference frame moving with the speed of the optical pu
The parameterd describes the velocity mismatch betwe
the waves. It causes linear microwaves to leave the opt
pulse into a preferred direction and therefore to break
symmetry.sm561 andso561 correspond to the sign o
the dispersion of the microwave and the optical wave,
spectively.

In the above set of equations we have scaled the m
relevant nonlinear terms, i.e., the OR and the EOE, to un
©2003 The American Physical Society11-1
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Consequently the parameterg, which ensures energy conse
vation, is normally extremely small (g,1023). Hence, en-
ergy losses of the optical wave due to the generation of q
sistatic electrical fields are almost negligible. We ha
checked that this very small term has no qualitative and
most no quantitative effect on the field dynamics. Hence
will be neglected by puttingg50 in the following.

For vanishingg, respective conservation laws simplif
considerably. The energy of the optical wave and someth
like an effective mass of the microwave, which are defin
as

Eopt5E
2`

`

uuo~z,t !u2dt

and

Mm5E
2`

`

um~z,t !dt, ~3!

are conserved. A third conservation law determines the
tion of the center of gravity of the microwave,

Sm5
1

Mm
E

2`

`

tum~z,t !dt as
]

]z
Sm5d2

Eopt

Mm
. ~4!

Hence the center of gravity of the microwave moves alw
with a constant velocity, which is determined by the co
served quantities given above. In the absence of an op
excitation, the microwave components always travel into o
direction, whereas a stationary field distribution require
balance between effective mass of the microwave, energ
the optical component, and velocity mismatch.

Although the above system of Eqs.~1! and ~2! is nonin-
tegrable by means of the inverse scattering transform@14#,
there exists a two-parameter family of bright solitary wav
These are characterized by a propagation constantb and by
a certain velocity. To simplify the analysis we restrict ou
selves to stationary solutions with respect to the chosen
erence frame. Moving solutions can be generated from r
ing ones by varying the velocity mismatch and using
simple transformation. In what follows we are looking f
soliton solutions of the form

um~z,t !5ums~ t !, ~5!

uo~z,t !5uos~ t !exp~ ibz!, ~6!

whereb is the propagation constant. Introducing the ans
Eqs.~5! and~6! into Eqs.~1! and~2! and integrating Eq.~1!
once we obtain

sm

d2

dt2
ums2dums1uuosu250, ~7!

so

2

d2

dt2
uos1buos1umsuos50. ~8!
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Note that for a real valued optical fielduos Eqs.~7! and ~8!
coincide with those obtained in second-harmonic genera
~SHG! cascading@2,15#, where the microwave plays a sim
lar role as the second harmonic field. To allow for brig
solitary wave solutions with evanescent tails the dispers
of the microwavesm and the velocity mismatchd must have
the same sign,smd.0, which expresses the fact that th
speed of the soliton must differ from any velocity of a line
microwave. Also, the wave number of the optical wave h
to be distinct from that of any other linear wave of the op
cal spectrum. Consequentlybso,0 must hold. Here we re-
strict ourselves to overall normal dispersion and assumeso
5sm51. It can be shown that for this choice of paramete
ums is always positive and thereforeMm.0 must hold.

Respective field profiles of solitary waves can be obtain
for each propagation constant by solving Eqs.~7! and ~8!
numerically by means of a shooting technique@16#. Figure 1
shows the calculated amplitude profile of a solitary wave
the parametersd510, b5250.

III. BEHAVIOR UNDER PERTURBATION

In the next step, we investigate the dynamical behavio
the solitary wave solutions. A solution of Eqs.~7! and ~8!
was determined numerically, perturbed and propagated
cording to Eqs.~1! and ~2! by means of a Crank Nicholso
scheme. The perturbation was performed in a similar man
to Ref.@17#. The aim was to keep the total power of the pul
constant while using an initial profile for the amplitude
um,o(z,t),

um,o~0,t !5F ums,os~ t !21j
ums,os

2 ~0!

d2

dt2
ums,os

2 ~ t !u t50

d2

dt2
ums,os

2 ~ t !G 1/2

,

~9!

wherej represents the perturbation amplitude.
Figure 2 shows the outcome of a representative numer

experiment. The perturbed solitary wave shows quite reg
oscillations around its stationary state. In contrast to, e
SHG solitons@17#, there is a strong radiation from the m

FIG. 1. Calculated amplitude profiles of solitary wave soluti
with d510, b5250. Solid curve microwaveums; dashed curve
optical waveuos.
1-2
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crowave and a certain damping of the oscillations is
served~see Fig. 3!. Further numerical simulations showe
that a number of discrete oscillation frequencies exists
even beating may occur. However, we never observed
underlying solitary wave to decay even for perturbatio
comparable with the soliton amplitude or for extremely lo
propagation distancesz'5000 ~not shown here!.

IV. LINEAR STABILITY ANALYSIS

It has been shown@17# that regular, long-lived oscillations
of solitary waves correspond to internal eigenmodes or n
trivial, discrete bound states of the respective lineariz
problem. They are found in a large variety of nonintegra

FIG. 2. Persistent oscillations of perturbed solitary wave so
tion; j50.2, soliton parameters as in Fig. 1.~a! amplitude of the
microwaveum ; ~b! absolute value of the optical waveuuou.
-
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systems, for example, the generalized KdV equation@18#, the
generalized nonlinear Schro¨dinger equation@19,20# or, as in-
dicated above, the system describing SHG solitary wa
@17#.

To investigate the stability behavior and the influence
internal modes in more detail, we perform a linear stabil
analysis. To this end we assume the real valued soliton s
tion ums, uos to be known and introduce small perturbatio
em,o(z,t) as um(z,t)5ums(t)1em(z,t) and uo(z,t)5@uos(t)
1eo(z,t)#exp(ibz). Inserting this ansatz into Eqs.~1! and~2!
results in the linearized set of equations,

]em

]z
1d

]em

]t
2

]3em

]t3
2

]

]t
@uos~eo* 1eo!#50, ~10!

i
]eo

]z
2beo2

1

2

]2eo

]t2
2~uosem1umseo!50. ~11!

The small perturbations are expressed as

em5
1

2
Xm~ t !exp~ ilz!1

1

2
Xm* ~ t !exp~2 il* z!, ~12!

eo5
1

2
@Xo~ t !1Yo~ t !#exp~ ilz!

1
1

2
@Xo~ t !2Yo~ t !#* exp~2 il* z!, ~13!

where Xm,o and Yo refer to the in-phase and in-quadratu
components of the perturbations. Note that the microwav
real and is perturbed by the in-phase component only.
following eigenvalue problem results:

LE5lE, ~14!

where the eigenvectorE(t)5@Xm(t),Xo(t),Yo(t)#T. The op-
eratorL in the present case is given by

-

L5S 2 i F d3

dt3
2d

d

dtG 22i Fuos

d

dt
1

duos

dt G 0

0 0 2
1

2

d2

dt2
2b2ums

2uos 2
1

2

d2

dt2
2b2ums 0

D . ~15!
is
on-
de
e

For a solutionE(t) with corresponding eigenvaluel the vec-
tors E* (t), E(2t), andE* (2t) are also solutions with ei
genvalues2l* , 2l, andl* , respectively. Excitation of a
perturbation with a negative imaginary eigenvalue com
 -

nent Im(l),0 results in exponential growth, and hence
recognized as corresponding to an instability of the stati
ary solution. In contrast, a perturbation with a linear mo
with positive imaginary part will eventually decay. Th
1-3



h

c

o-

ap

xis-
ist
ave
er
in-
ves.
the

nce
ed
tons
een
in-
nly
ded

ergy
to

sed
ear
cu-
es
f the
sion
ent

ob-

-
for

l-

ust
en-
that
ed

the
is
, all
des
he
ted

ans

icu-
hes.
if-
ues
er
of
ete

d

K. BUBKE, D. C. HUTCHINGS, U. PESCHEL, AND F. LEDERER PHYSICAL REVIEW E67, 016611 ~2003!
eigensystem, Eq.~15!, has two trivial eigensolutions atl
50,

E5S dums/dt

duos/dt

0
D , ~16!

which corresponds to a position shift in both waves and

E5S 0

0

iuos

D , ~17!

which corresponds to a phase shift in the optical wave. T
asymptotic solutions forutu→` of the optical perturbation
functionsXo ,Yo are obtained by settingums and uos in Eq.
~15! to zero, giving

Xo ,Yo}exp~6Vot !, ~18!

with

Vo5A2~2b6l! ~Xo57Yo!. ~19!

A similar consideration of the microwave perturbation fun
tion Xm givesXm}exp(Vmt) for utu→` with three possible
solutions forVm,

Vm5 i ~p22p1!, ~20!

Vm56
A3

2
~p11p2!1

1

2
i ~p12p2!, ~21!

where

p65A3 6l/21@~d/3!31~l/2!2#1/2. ~22!

Bound eigenstates of the optical field can exist for Re(l)
,ubu. In contrast, for each reall we find a solution with
infinitely extended oscillatory tails of the microwave comp

FIG. 3. Damped oscillation of perturbed soliton: peak amplitu
of the microwaveump; all parameters as in Fig. 2.
01661
e
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nent. Hence, due to the third time derivative there is no g
in the continuum of the microwave.

This seems to contradict the requirements for the e
tence of bright solitary waves. Usually localized pulses ex
in complete gaps of the linear spectrum. Hence, they h
only evanescent waves available to form their low pow
tails. If this is not the case, stationary solutions can, in pr
ciple, couple to respective extended phase-matched wa
The consequence is the decay of a localized pulse due to
resulting energy losses. From this point of view the existe
of localized solitary waves, which coexist with extend
waves, seems to be an exceptional case. In fact, soli
which are located in the continuous spectrum have b
found recently in systems with quadratic and cubic nonl
earities@21#. These so-called embedded solitons exist o
for discrete wave numbers where the amplitude of exten
waves vanishes leading to isolated~or zero family! soliton
solutions. They were found to be unstable because en
reducing perturbations prevent the soliton from returning
its original wave number.

Although there is also no gap in the system discus
here, solitons belong to a two-parameter family and app
to be very robust. This surprising result is due to the parti
lar properties of the KdV-type equation, which determin
the shape of the microwave field. Because the equation o
microwave can be integrated once, the resulting expres
~7! has a parabolic dispersion and allows only for evanesc
linear waves provided thatsmd.0. However, if we investi-
gate dynamical properties or deal with the linearized pr
lem and nonvanishing eigenvalueslÞ0 no integration can
be performed and no gap appears. Equivalently, Eq.~20!
suggests that for any reall we will always find an eigenso
lution which possesses nondecaying and oscillating tails
t→6`.

However, we still have to explain why only a few wel
defined frequencies can be excited~see Fig. 2! although the
spectrum of unbound linear states is continuous. There m
be an additional constraint, which selects particular frequ
cies. The constraint is due to the physical requirement
the microwave can radiate in one direction only determin
by the sign of the velocity mismatchd. This is a conse-
quence of the lowest order dispersion term containing
third derivative in Eq.~1!. Figure 2 also demonstrates th
constraint by the observed single-sided radiation. Hence
linear waves, which have a nonzero amplitude at both si
t→6` cannot be excited. Only half-sided solutions of t
linearized problem can influence the stability of the isola
solitary wave.

Therefore, we solve the eigenvalue problem Eq.~14! for a
vanishing field at one boundary only by means of the Ev
method in a similar fashion to Ref.@22#. In general, this
corresponds to a scattering problem where we are part
larly interested in the cases where the transmission vanis
The validity of this technique was verified using a finite d
ference computation. As shown in Fig. 4, at discrete val
of l, half-sided eigenmodes with vanishing tails for eith
t→` or t→2` appear within the otherwise dense band
continuum modes. Interestingly, a large number of discr
modes can exist depending on the system parameters~see

e

1-4
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below!. To check if the one-sided internal modes are inde
the cause of the soliton oscillations in Fig. 2, a soliton so
tion was perturbed with a particular internal mode and s
sequently propagated. As shown in Fig. 5, discrete osc
tions can be excited separately and both the calcula
eigenvalue and the oscillation frequencies are in good ag
ment, as seen in Table I.

The eigenvalues of these half-sided modes show addit
ally a small imaginary component Im(l).0 ~see Fig. 6!
indicating a decay of respective perturbations. Hence,
energy loss due to the outflow of microwave power cause
decay of respective oscillations~see Fig. 3!, while leaving

FIG. 4. Internal one-sided quasibound modes of the solit
wave depicted in Fig. 1;~a! real part ofXo; ~b! real part ofXm .
Thick solid curve Re(l)532.1, dashed curve Re(l)543.0, thin
solid curve Re(l)548.2.

FIG. 5. Excitation of a soliton with its internal modes. The pe
amplitude of the microwave is shown. Soliton parameters as in
4. Solid curve, excitation with an internal mode with Re(l)532.1
~circular frequency of oscillationV532.0); dashed curve, excita
tion with an internal mode with Re(l)548.2~circular frequency of
oscillationV547.8).
01661
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the soliton intact. As shown in Table I, the damping rate
internal oscillations is in good agreement with the imagina
part of the discrete eigenvalues Im(l). Here, the soliton so-
lutions were perturbed with particular modes in a simi
manner to Fig. 5.

Considering the symmetry properties of the eigensys
discussed earlier, we also obtain a set of discrete solution
reflection symmetry aroundt50 with oscillating tails on the
opposite side. They correspond to the physical situation
incoming waves are just absorbed by the soliton leading
resonant excitation of oscillations. Therefore, respective
genvalues have a negative imaginary part Im(l),0, but
play no role in the absence of an external source of radiat

The location of all these different types of eigenvalues
the complex plane is sketched in Fig. 7. In domain~1! we
find a dense band of radiation modes with both microwa
and optical eigenfunctions are unbound. Domain~2! repre-
sents eigenmodes with bound optical and unbound mic
wave eigenfunctions. Domains~3! and~4! correspond to dis-
crete right-sided and left-sided asymmetric perturbat
functions, respectively.

It should be noted that eigenfunctions with oscillatin
tails or ‘‘quasibound modes’’ have also been found a
proven to be responsible for soliton oscillations in the SH
system@17#. There the corresponding eigenvalue lies in t
gap of the fundamental but in the continuum of the seco
harmonic.

y

g.

TABLE I. Oscillation frequencies and damping constants of p
turbed solitary waves,b5250. Re(l)calc and Im(l)calc are real
and imaginary parts of calculated eigenvaluel, Re(l)prop and
Im(l)prop correspond to oscillation of soliton perturbed with inte
nal mode.

d Re(l)calc Im(l)calc Re(l)prop Im(l)prop

0.1 8.83 0.155 8.88 0.141

1 17.6 0.235 17.6 0.238

10 32.1 0.107 32.0 0.128

FIG. 6. Development of eigenvaluesl in complex plane with
varying parameterd (b5250); solid curves, right-sided quas
bound internal modes; dashed curves, left-sided quasibound mo
Depicted are the first four discrete modes.
1-5
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Figure 8 shows the calculated eigenvaluesl as a function
of the parameterb and d. For decreasingd and hence de-
creasing velocity mismatch, a number of eigenvalues em
from the boundary of the continuous spectrum of the opt
wave. Note that in Fig. 8~b! only the eigenvalues of the firs
ten modes are shown. However, we did not find an up
limit for the number of half-sided modes. For large veloc
mismatch, i.e., for larged, there are no internal eigenmode
leading to a threshold for the appearance of soliton osc
tions. A similar threshold exists in the case of SHG solito
@23# for the bifurcation of an internal mode from the contin
ous spectrum, where for large phase mismatch between
damental and second harmonic the soliton does not sup
an internal mode.

FIG. 7. Schematic structure of the spectrum of the linear eig
value problem Eqs.~14! and ~15!: ~1! both microwave and optica
eigenfunctions are unbound@ uRe(l)u.ubu, Im(l)50#, ~2! bound
optical and unbound microwave eigenfunctions~symmetric!, @0
,uRe(l)u,ubu,Im(l)50#, ~3! location of decaying quasiboun
modes@ Im(l).0#, ~4! location of exponentially growing quasi
bound modes@ Im(l),0#, ~5! trivial modes (l50).

FIG. 8. Real part of eigenvalues Re(l) of one-sided discrete
internal modes as a function of soliton parameters.~a! d520, the
gap of the optical wave is marked by a dotted line;~b! eigenvalues
of the first ten modes withb5250; the numbering corresponds
eigenmodes in Fig. 6.
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As shown in Fig. 9, higher order modes are more wea
damped than lower order ones. This coincides with our
servation that a symmetric perturbation corresponding to
~9! leads to an initial strong excitation of the fundamen
mode, whereas after a certain propagation length the dyn
ics is governed by a beating of oscillations with frequenc
corresponding to higher order modes.

Even for strong perturbations, we never found any soli
to decay into linear radiation. A simple explanation of th
robustness is based on the conservation law Eq.~4!. For a
solitary wave solution satisfying Eqs.~7! and ~8!, the center
of gravity of the microwave is at rest. But, a decay into line
radiation would result in a constant flow of microwave e
ergy into one direction. Hence, the center of gravity of t
whole microwave distribution would shift eventually in con
tradiction to Eq.~4!. Therefore, the main portion of the m
crowave component must remain localized and only wa
with Mm50 can be emitted.

V. CONCLUSIONS

We have studied solitary waves in a system describing
interaction between a microwave and an optical wave i
second-order nonlinear medium. The equations are simila
a system of long-wave–short-wave interaction, which can
found in a variety of other physical systems. Perturbed s
tons show persistent oscillations with strong radiation fro
the microwave. These oscillations stem from eigenmode
the linearized problem. It is found that the solitary waves
always located in the continuum of the microwave. Ap
from the dense band of continuum modes discrete half-si
modes with complex eigenvalues exist. As the microwave
physically constrained to radiate in one direction only, on
modes which lead to regular, damped oscillations are
cited. Whereas for large mismatch none of these degene
states exist, a number of discrete eigenvalues bifurcate f
the border of the continuous spectrum of the optical wa
with decreasing velocity mismatch. No upper limit to th
number of quasibound states seems to exist~see Fig. 8!.
Eigenstates which lead to soliton instability were not foun
Soliton decay is prohibited by the physical conservation la
for the system.

-

FIG. 9. Imaginary part of eigenvaluesl vs soliton parameterd
(b5250). Depicted are the first four discrete modes; the numb
ing corresponds to eigenmodes in Fig. 6.
1-6
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